Sprouting of axonal collaterals after spinal cord injury is prevented by delayed axonal degeneration.

نویسندگان

  • E Collyer
  • A Catenaccio
  • D Lemaitre
  • P Diaz
  • V Valenzuela
  • F Bronfman
  • F A Court
چکیده

After an incomplete spinal cord injury (SCI), partial recovery of locomotion is accomplished with time. Previous studies have established a functional link between extension of axon collaterals from spared spinal tracts and locomotor recovery after SCI, but the tissular signals triggering collateral sprouting have not been identified. Here, we investigated whether axonal degeneration after SCI contributes to the sprouting of collaterals from axons spared after injury. To this end, we evaluated collateral sprouting from BDA-labeled uninjured corticospinal axons after spinal cord hemisection (SCI(H)) in wild type (WT) mouse and Wld(S) mouse strains, which shows a significant delay in Wallerian degeneration after injury. After SCI(H), spared fibers of WT mice extend collateral sprouts to both intact and denervated sides of the spinal cord distant from the injury site. On the contrary, in the Wld(S) mice collateral sprouting from spared fibers was greatly reduced after SCI(H). Consistent with a role for collateral sprouting in functional recovery after SCI, locomotor recovery after SCI(H) was impaired in Wld(S) mice compared to WT animals. In conclusion, our results identify axonal degeneration as one of the triggers for collateral sprouting from the contralesional uninjured fibers after an SCI(H). These results open the path for identifying molecular signals associated with tissular changes after SCI that promotes collateral sprouting and functional recovery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanisms of spinal cord injury regeneration in zebrafish: a systematic review

Objective(s):To determine the molecular and cellular mechanisms of spinal cord regeneration in zebrafish. Materials and Methods: Medical databases of PubMed and Scopus were searched with following key words: Zebrafish; spinal cord injuries; regeneration; recovery of function. The map of mechanisms was performed using Xmind software. Results: Wnt/ß-catenin signaling, L1.1, L1.2, Major vault prot...

متن کامل

The Expression implication of GDNF in ventral horn and associated remote cortex in rhesus monkeys with hemisected spinal cord injury

Objective(s): Glial cell line-derived neurotrophic factor (GDNF) can effectively promote axonal regeneration,limit axonal retraction,and produce a statistically significant improvement in motor recovery after spinal cord injury (SCI). However, the role in primate animals with SCI is not fully cognized. Materials and Methods:18 healthy juvenile rhesuses were divided randomly into six groups, obs...

متن کامل

Blockade of Nogo-66, myelin-associated glycoprotein, and oligodendrocyte myelin glycoprotein by soluble Nogo-66 receptor promotes axonal sprouting and recovery after spinal injury.

The growth of injured axons in the adult mammalian CNS is limited after injury. Three myelin proteins, Nogo, MAG (myelin-associated glycoprotein), and OMgp (oligodendrocyte myelin glycoprotein), bind to the Nogo-66 receptor (NgR) and inhibit axonal growth in vitro. Transgenic or viral blockade of NgR function allows axonal sprouting in vivo. Here, we administered the soluble function-blocking N...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Experimental neurology

دوره 261  شماره 

صفحات  -

تاریخ انتشار 2014